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ABSTRACT

Transcranial magnetic stimulation (TMS) is a noninvasive treatment for a variety of neurological
and neuropsychiatric disorders by triggering a calcium response through magnetic stimulation. To
understand the full effects of this treatment, researchers will often use numerical simulations to model
and study the calcium response. These simulations are limited to short-time simulations of single
neurons due to computational complexity, restricting their use in clinical settings. In this paper, we
explore an application of physics-informed neural networks (PINNs) to accurately produce long-time
simulations of neuronal responses, opening the possibility of utilizing these methods in clinical
applications to directly benefit patients.

1 Introduction

Transcranial magnetic stimulation (TMS) is an invaluable
tool for treating a variety of neurological and neuropsy-
chiatric disorders in a noninvasive way by using a time-
varying magnetic field passed through the brain to stimu-
late neurons (2; 7). This stimulation triggers a response
from intracellular calcium, which is vital to regulating the
transfer of information from synaptic sites to the cell nu-
cleus (4). Ultimately, this allows for treatment of various
forms of degenerative neurological disorders, and TMS
is therefore used extensively in both research and clinical
settings (8).

While TMS is very important, its full effects are still not
entirely understood. To investigate these effects, compu-
tational tools and studies are exceptionally important to
complement experimental studies (5). To this end, dif-
ferent numerical computation tools have been developed
(3; 13; 6). While these tools are very good at capturing
fine grain details and the quick responses to fast TMS fre-
quencies, they are limited to short simulated time spans of
single neurons due to computational complexity. In order
to address these limitations, we look to neural networks
(from here on, "neuron" will be used to refer to a biological
neuron, and "neural network" will be used to refer to the
machine learning paradigm).

Neural networks have been used in various applications,
many focusing on image recognition and reconstruction
(e.g., see (1)). More recently, knowledge of physical mod-
els have been introduced into neural networks to form
physics-informed neural networks (PINNs) (11; 9; 10). In
this work, we utilize these PINNs to incorporate partial dif-
ferential equations (PDEs) that model calcium dynamics in
neurons into the larger neural network. With a network that
satisfies physical laws, we can build simulations that pro-
vide long-time results, overcoming one of the limitations
of traditional numerical methods. This leads to another
limitation of PINNs, in that they have been shown to have
difficulty accurately to simulate diffusion problems (12).
This can be overcome with strategies of both relaxation of
the loss function and periodic activation functions (15; 14),
which we utilize in our application.

This paper is structured as follows: In Section 2, we de-
scribe the physical model of calcium dynamics that is used
(with further details in Appendix A). In Section 3, we
describe the details on PINNs as we used them in our ap-
plication. In Section 4, we present results of a simulated
cable neuron. In Section 5, we draw conclusions from our
results and describe the broader impacts of this work.
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2 Calcium Dynamics

Within a neuron, ion dynamics are modeled by reaction-
diffusion equations of the form

∂u

∂t
= D∆u+R(u), (1)

where u is an ion concentration, D is the diffusion coeffi-
cient, and R(u) is a reaction term. From Fick’s first law,
we have

J = −D
∂u

∂x
, (2)

where J is the diffusion flux. This leads to the Neumann
boundary condition

∂u

∂x
= − J

D
. (3)

In the cytosol, the non-organelle interior of a neuron,
calcium is transported via various mechanisms and is
buffered by the molecule calbindin. We model this us-
ing a dimension-reduced system (4), given by

∂c

∂t
= ∇ · (Dc∇cc) + f(b, cc) + JPM , (4)

∂b

∂t
= ∇ · (Db∇b) + f(b, cc), (5)

where the reaction term

f(b, cc) = k−b (b
tot − b)− k+b bcc

models the reaction equation

Ca2+ + CalB
κ−
b−−⇀↽−−
κ+
b

CalBCa2+, (6)

and JPM represents the net Ca2+ ion flux across the
plasma membrane (separating intra- and extracellular
space). This term can be broken down into the differ-
ent mechanisms that transport calcium across the plasma
membrane,

JPM = −JP − JN + JSY N + JV DCC , (7)

where JP is the flux from plasma membrane Ca2+-ATPase
pumps (PMCA), JN is the flux from Na+/Ca2+ exchang-
ers (NCX), JSY N is the flux through the post-synaptic
density (PSD), and JV DCC is the flux from voltage depen-
dent calcium channels (VDCCs). Details of how each flux
term is calculated are given in Appendix A.

3 Physics-Informed Neural Networks

To simulate calcium dynamcis, we incorporate the above
diffusion model into a physics-informed neural network
(PINN) (11; 9; 10). Consider a general partial differential
equation of the form

ut +N [u] = 0, (8)

with x ∈ Ω, t ∈ [0, T ], where u(x, t) is the latent solution,
N [·] is a nonlinear differential operator, and Ω is the com-
putational domain. Define f(x, t) as the left-hand-side of
Eq. (8),

f := ut +N [u]. (9)
By approximating u(x, t) using a deep neural network,
we build a physics-informed neural network f(x, t) by
combining this network with Eq. (9). The shared terms of
the networks are learned by minimizing the mean squared
error loss
MSE = (1− α)MSEu + α(MSEf +MSEb), (10)

where

MSEu =
1

Nu

Nu∑
i=1

|u(tiu, xi
u)− ui|2 (11)

represents the error of the initial condition,

MSEf =
1

Nf

Nf∑
i=1

|f(tif , xi
f )|2 (12)

represents the error of the operator f inside the domain,
and

MSEb =
1

Nb

Nb∑
i=1

|ux(t
i
b, x

i
b) + J/D|2 (13)

represents the error of the Neumann boundary condi-
tions. Here, {tiu, xi

u, u
i}Nu

i=1 represents the initial condi-
tion training data, {tif , xi

f}
Nf

i=1 represents the collocation
points within the domain (excluding the boundaries), and
{tib, xi

b}
Nb
i=1 represents the boundary collocation points.

In our minimization, we apply a relaxation parameter
α ∈ (0, 1]. This is selected a priori by trial and error,
and may require tuning to fit a particular model (15).

A defining feature of the calcium model is that it is a
pure diffusion problem, which have been difficult to accu-
rately model with neural networks. PINNs were initally
introduced with tanh activation function, and were demon-
strated to perform well for advection-dominated problems
(11). The SIREN network introduced the use of periodic
activation functions (14), which have been demonstrated
to correct for problems in modeling diffusion-dominated
problems (12). Therefore, we utilize a sin activation func-
tion in our network to provide consistent long-time model-
ing.

4 Results

In this section, we demonstrate the effectiveness of PINNs
in modeling calcium dynamics. All constants used are
given in Table 1 and Table 2. We consider the computa-
tional domain (x, t) : [−1, 1] × [0, 1], and use a numeri-
cally computed solution as the exact solution (see (3) for
details on numerical methods). This is effectively a short
time simulation that is not difficult to numerically simulate,
but a learned model may be used for long time simula-
tions (100 to 1000 times longer). The network consists of
4 hidden layers of 50 computational neurons each. The
network is initialized with a uniform Xavier scheme, and

2



Coupled Calcium PINN

an Adam optimizer with learning rate of 0.001 is used to
minimize the MSE. N = 300 collocation points are ran-
domly generated on both the interior of the domain and
the boundary (50 on each spatial boundary and 50 on the
initial condition). These can be seen in Fig. 1.

For the biological model, we introduce a constant stimulus
at the soma for the entire simulation time, and a constant
voltage is applied. As can be seen in Appendix A, the gat-
ing function for VDCCs requires the solution of two ODEs.
For the purposes of simulating TMS treatment protocols,
predetermined voltage data may be provided to review its
effects. Since the gating function only requires voltage and
temporal values, these gating probabilities may be precom-
puted prior to training the network. We therefore avoid the
requirement of modeling additional ODEs, and provide
these gating probabilities explicitly to the network.

Figure 1: Domain collocation points

Figure 2: Initial concentrations

We first look
at the values
of the initial
calcium and
calbindin con-
centrations.
In the numer-
ical simula-
tion, the ini-
tial concen-
trations are
given as con-
stant values. These may not represent the true steady
state, and they will not satisfy the diffusion model, which
leads to error in the PINN if they are used. We therefore
consider the initial condition as the computed values after
a small number of numerical timesteps (∼5% of the total
timesteps), as the concentrations are approaching values
that satisfy the diffusion model. As the number of numer-
ical timesteps is selected a priori, the values are still not
guaranteed to be consistent with the diffusion model, but
this significantly improves the performance of the PINN.

In Fig. 2, we show the results of the network prediction of
the initial concentrations. While there is a small amount of
error, we can see that the network fairly accurately predicts
these values, with a numerical L2 error in the calcium of
1.34 × 10−3. In Fig. 4 and Fig. 5, we see that this error
is significantly reduced to nearly vanishing as the simula-

tion moves forward in time and the concentration values
become consistent with the diffusion model. By the final
time, the numerical L2 error in the calcium has dropped to
5.83× 10−4.

Figure 3: Concentrations at soma

For TMS
treatment pur-
poses, we
may be inter-
ested in what
is occurring
at the soma
(cell body) of
the neuron.
Fig 3 shows
the concentra-
tion over time
at the soma of our cable neuron. We see that the network
very accurately predicts the concentrations of both cal-
cium and calbindin over time, producing a solution nearly
indistinguishable from the exact solution.

5 Conclusions

In this study, we presented a physics-informed neural net-
work (PINN) for modeling a coupled calcium model in
a cable neuron. This is significant for the study of repet-
itive transcranial magnetic stimulation (rTMS), as it al-
lows for long-time simulations with near instantaneous
results. While traditional numerical methods provide accu-
rate solutions, the requirement of small timesteps results
in significant computation time and hampering the use
for simulating a full rTMS treatment that could last sev-
eral minutes with voltage pulses in millisecond bursts (13).
Training a PINN on a short timespan allows for feeding
data into the fully trained network and producing a long
simulation.

Our results show that PINNs are capable of accurately
capturing the calcium concentration over a cable neuron,
which can be extended over time. While this work is lim-
ited to a single cable neuron, using this to create branches,
and therefore a full neuron model, is an important direction
for future work.

Broader Impact

Transcranial Magnetic Stimulation is an important nonin-
vasive treatment for a wide array of neurological disorders.
While the neuronal response to TMS is still poorly under-
stood, simulation tools are providing a way of studying
these effects and how they will benefit patients. A limiting
factor in this research has been the difficulty in devel-
oping long-time simulations using traditional numerical
methods. Neural networks provide the ability to provide
long-time simulations with ease that may be applied in
both a research and clinical setting, benefitting researchers
and patients alike. Our work is an important step in that
direction, and has the potential to fill this need.
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Table 1: Values of constants in calcium model and fluxes

Constant Value

D 1
btot 5
k−b 6
k+b 3

JP

ρP 2
IP 1E-2
KP 3

JN

ρN 2E5
IN 1E-4
KN 180

JSY N

jrls 1

Table 2: Values of constants in calcium model VDCC flux

Constant Value

JV DCC

R 8.314
F 96485
T 310
z 2
τk,0 1.7E-3
τl,0 70E-3
Kk 1.7E-3
Kl 70E-3
zk 2
zl 1
γk 0
γl 0
V1/2,k -21E-3
V1/2,l -40E-3

Figure 4: Calcium concentrations

Figure 5: Calbindin concentrations
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Appendix A: Membrane Flux Components

The plasma membrane flux in this study can be separated
as

JPM = −JP − JN + JSY N + JV DCC . (14)

In this section, we give a brief description of each compo-
nent as described in (4).

PMCA Pumps A second-order Hill equation is used
to model the plasma membrane Ca2+ current of PMCA
pumps,

JP (cc) = ρP · IP c
2
c

K2
P + c2c

, (15)

where ρP is the density of PMCA pumps on the plasma
membrane, IP is the single channel Ca2+ current, cc is the
cytosolic Ca2+ concentration, and KP is the measure of
Ca2+ affinity.

NCX Exchangers A second-order Hill equation is used
to model the plasma membrane Ca2+ current of NCX ex-
changers,

JN (cc) = ρN · INcc
KN + cc

(16)

where ρN is the density of NCX exchangers on the plasma
membrane, IN is the single channel Ca2+ current, cc is the
cytosolic Ca2+ concentration, and KN is the measure of
Ca2+ affinity.

Synaptic Influx Calcium influx is modeled by a linearly
decreasing function:

JSY N = jrls ·
(
1− t− t0

τrls

)
λt0(t) (17)

where jrls is the current density and τrls is the associated
time constant. The function λt0(t) is given by:

λt0(t) =

{
1, t ∈ [t0, t0 + τrls]
0, otherwise. (18)

VDCCs For VDCCs, we use a Borg-Graham model. The
Ca2+ current is given by

JV DCC(V, cc, t) = G(V, t)F (V,∆[Ca2+]), (19)

where G(V, t) ∈ [0, 1] is the gating function and
F (V,∆[Ca2+]) is the flux function. The difference be-
tween cytoplasmic and extracellular ion concentration is
given by

∆[Ca2+] = cc − co,

and the flux function is given by the Goldman-Hodgkin-
Katz equation,

F (V,∆[Ca2+]) = pCa2+
V z2F 2

RT
·cc − co exp(−zFV/RT )

1− exp(zFV/RT )
(20)

where R is the universal gas constant, F is Faraday’s con-
stant, T is temperature in Kelvin, pCa2+ is the permeability
of Ca2+ ions through the channels, and z is the valence
of a Ca2+ ion. The gating function for N-type VDCCs is
given by

G(V, t) = k(V, t)l2(V, t), (21)

where the gating functions k(·) and l(·) satisfy the two
ODEs

∂k

∂t
=

k∞ − k

τk
and

∂l

∂t
=

l∞ − l

τl
,

where

k∞ =
αk(V )

αk(V ) + βk(V )
; l∞ =

αl(V )

αl(V ) + βl(V )
,

and

τk =
1

αk + βk
+ τk,0; τl =

1

αl + βl
+ τl,0.

The rate functions are defined as

αk(V ) = Kk exp

(
zkγk(V − V1/2,k)F

RT

)
βk(V ) = Kk exp

(−zk(1− γk)(V − V1/2,k)F

RT

)
αl(V ) = Kl exp

(
zlγl(V − V1/2,l)F

RT

)
βl(V ) = Kl exp

(−zl(1− γl)(V − V1/2,l)F

RT

)
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