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ABSTRACT

Deep learning has expedited important breakthroughs in research and commercial applications for next-generation
technologies across many domains including Automatic Target Recognition (ATR). The success of these models
in a specific application is often attributed to optimized hyperparameters: user-configured values controlling the
model’s ability to learn from data. Tuning hyperparameters however remains a difficult and computationally
expensive task contributing to deficient ATR model performance compared to set requirements.

We present the efficacy of applying our developed hyperparameter optimization method to boost the effec-
tiveness and performance of any given optimization method. Specifically, we use a generalized additive model
surrogate homotopy hyperparameter optimization strategy to approximate regions of interest and trace minimal
points over regions of the hyperparameter space instead of ineffectively evaluating the entire hyperparameter
surface. We integrate our approach into SHADHO (Scalable Hardware-Aware Distributed Hyperparameter Op-
timization) a hyperparameter optimization framework that computes the relative complexity of each search space
and then monitors the performance of the learning task over the trials.

We demonstrate how our approach effectively finds optimal hyperparameters for object detection by conduct-
ing a model search to optimize multiple object detection algorithms on a subset of the DSIAC ATR Algorithm
Development Image Database and finding models that achieve comparable or lower validation loss in fewer
iterations than standard techniques and manual tuning practices.

Keywords: automatic target recognition, computer vision, hyperparameter optimization

1. INTRODUCTION

Automated Target Recognition (ATR) is the general term for automated systems designed to detect targets
(objects, persons, animals, etc.) based on sensor data. It is a broad term which covers a variety of sensor
domains (audio, visual, infrared, radio, etc.) with applications in civilian and military sectors. When dealing
with image data, ATR is highly related to the Object Detection and Object Segmentation categories of AI-based
Computer Vision algorithms. These algorithms predict what targets are in an image and where in the frame they
are. ATR research often contends with additional challenges beyond the non-trivial problem of generic object
detection in the form of extreme edge case scenarios (e.g. low resolution and/or long-range targets) and less
commonly used sensor suites (such as near infrared, thermal, synthetic aperture radar (SAR), or multi-modal
sensor arrays). The Defense Systems Information Analysis Center (DSIAC) ATR dataset,1 for example, contains
images of military and civilian vehicles upwards of 5 km from the thermal camera. The statistics of DSIAC’s data
distribution differ considerably from typical benchmarks like ImageNet2 or MSCOCO.3 Consequently, customized
solutions or, in the least, heavily modified off-the-shelf generic object detection algorithms are often required
to address specific ATR scenarios. We experimented with different YOLO architectures and compared a newly
developed homotopy-based optimization method HOMOPT4 against random search on the DSIAC dataset. Our
findings showed that HOMOPT method was able to effectively find lower validation loss scores over the random
search approach on most of the examples. This result has important implications for the ATR field, where
optimized hyperparameters play a critical role in meeting specific requirements. Our method can help streamline
the hyperparameter optimization process and ultimately lead to improved ATR model performance in challenging
scenarios, such as those encountered in the DSIAC dataset.
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2. BACKGROUND

2.1 Background

Automatic target recognition (ATR) is a notoriously difficult problem, particularly due to the limited number
of research-oriented training data sets for neural network algorithms. The vast majority of previous work relied
on hand-tuned hyperparameters in order to produce the best results from the choice of data set. Gregoris et
al.5 compare information of inner and outer window sizes to detect targets, where the window sizes, along with
a threshold value for comparing ratios, are set as predetermined hyperparameters. Yoon et al.6 utilize localized
pixel thresholding, where the thresholds are all set hyperparameters similar to Musicki & Evans.7 Mahalanobis
et al.8 develop a Quadratic Correlation Filter to localize and classify targets that have a preset size of r × c.
Zhou and Crawshaw9 use a thresholder in a single block of their detection algorithm to remove false targets
and eliminate redundant target points, which is independent of data and is preset to a low fixed value. They
state that the alogirthm does not require human interaction once a threshold has been set. There are few neural
network architectures in thermal ATR research, particularly demonstrated on the DSIAC.10 DeepTarget11 uses
a classic Adam optimizer with predefined hyperparameters, using standard β values and where the learning rate
is reduced by half after a preset number of iterations. Mahalanobis and McIntosh12 compare Faster R-CNN13

and QCF8 on DSIAC, both of which require preset hyperparamenters in order to obtain the best results.

2.2 Motivations

The motivation for this work comes from the need for reliable and efficient ATR systems, which are critical
in a variety of applications in both civilian and military sectors. Object detection algorithms, which form the
backbone of ATR systems, have advanced significantly in recent years due to the development of deep learning
methods. However, ATR research presents unique challenges such as low resolution and/or long-range targets,
and less commonly used sensor suites, which require customized solutions or heavily modified generic object
detection algorithms. One of the major challenges in developing these systems is the tuning of hyperparameters,
which control the model’s ability to learn from data. This process can be time-consuming and computationally
expensive, leading to suboptimal model performance compared to set requirements. Therefore, the development
of efficient and effective hyperparameter optimization techniques is crucial for advancing ATR systems, and this
work aims to explore the efficacy of applying more advanced optimization methods to address this challenge.
By optimizing hyperparameters without requiring extensive manual tuning, we aim to improve the performance
of object detection algorithms in challenging ATR scenarios and contribute to the development of more reliable
and efficient ATR systems.

3. METHODS

3.1 Dataset & Processing

The images in the DSIAC dataset are captured by two forward-looking, ground-based sensors: an L3 Cincinnati
Electronics Night Conqueror MWIR camera using a 640×480 pixel Indium Antimonide focal plane array with a
28 micron pitch, and an Illunis visible light camera. Images were col- lected from both cameras during daytime
and from the MWIR camera at night. For each target/range/time scenario, images were captured at 30 Hz for
one minute, yielding 1,680 images per sequence. We use an updated DSIAC protocol provided by Domenick
Poster10 where instead of using the provided annotations, we calculate corrected bounding boxes using positional
metadata available for the MWIR imagery. This provided protocol also includes the addition of a training and
testing split where the test set contains the same targets in different conditions which is not currently present in
the DSIAC dataset itself. We only use data from the following classes: Pickup, SUV, BTR70, BRDM2, BMP2,
T72, ZSU23-4, and 2S3 (dismounted civilian and towed artillery scenarios have been omitted). The image frames
are from a set of video sequences recording each target individually traveling around a preset, 100 meter diameter
circular path at distances ranging from 1000 to 5000 meters in 500 meter intervals. See Table 1 for the sizes of
our training, validation, and testing subsets.

Proc. of SPIE Vol. 12521  1252107-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 20 Jun 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Figure 1. Example subset of images from the DSIAC ATR dataset with labeled vehicles. Note the difficulty of the task
as the labeled vehicles are barely visible due to factors such as low resolution and long-range targets.

Range Train Val Test
1000 1843 461 -
1500 - - 458
2000 1834 458 -
2500 - - 425
3000 1728 432 -
3500 - - 425
4000 1709 427 -
4500 - - 413
5000 1601 400 -

Table 1. Table with Ranges and Training, Validation, and Test sets for DSIAC data.

3.2 Experiments

This study compared two different optimization methods, random optimization and a homotopy-based method
(HOMOPT)4 using the Scalable Hardware-Aware Distributed Hyperparameter Optimization (SHADHO)14 frame-
work. This optimization framework and our code is available on GitHub∗ for general search problems. Random
optimization is a common baseline for hyperparameter optimization. It involves randomly selecting hyperpa-
rameters for each trial without any knowledge of the performance of previous trials. This baseline allows for
an understanding of how much performance improvement can be gained with a more sophisticated optimization
method. HOMOPT in contrast starts with a set of initial values and a function that describes how the optimal
point changes as the hyperparameters are adjusted. For our experiments, we use 20 samples utilizing random

∗https://github.com/jeffkinnison/shadho
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search. HOMOPT then gradually adjusts the input hyperparameter values and evaluates the function at each
step to find the set of values that produce the best output for the optimization. This is done by repeated
optimizations, while gradually reducing a parameter called the homotopy parameter, until the optimal set of
hyperparameters is found within the designated set of search trials. The surrogate model in HOMOPT can be
thought of as an approximation of the true performance landscape, allowing HOMOPT to be more effective in
its exploration of the search space. In contrast, random optimization methods select hyperparameters purely by
chance, without considering any underlying structure of the problem. Despite their simplicity, random search
methods have been shown to be effective in a variety of settings, making them a natural baseline for comparison.
We conducted a hyperparameter search using 100 trials for four different YOLO architectures on two different
subsets of the DSIAC dataset. Specifically we tested on the 1000-2000 meter range as well as the 2000-3000
meter range. The models were all trained from scratch with randomly initialized weights and trained for 300
epochs. We monitored the validation box loss during the search, as it is a standard metric for evaluating object
detection models, and selected the best observed validation box loss as the performance metric for each model.
Validation box loss measures the difference between the predicted bounding boxes of objects in the image and
the ground truth bounding boxes provided in the labeled training data. The lower the validation box loss, the
better the model’s predictions align with the actual objects in the image. In addition, we plot the simple log
regret against the number of iterations. The simple log measures the difference between the best observed value
found so far and the true optimum, expressed in logarithmic scale. In other words, it represents the number
of orders of magnitude that the algorithm is away from the optimal value. A smaller simple log regret value
indicates a better performance of the algorithm. A table outlining the search space for the hyperparameters used
in the search can also be found in Table 2.

Table 2. Hyperparameters and their domain ranges for ATR experiments. The table on the left lists hyperparameters
related to data augmentation, while the right table lists those related to model.

Hyperparameter Domain Range

hsv h [10−4, 10−1]

hsv s [0, 1]

hsv v [0, 1]

degrees [0, 180]

translate [0, 0.3]

scale [0, 1]

shear [0, 45]

perspective [0, 0.001]

flipud [0, 1]

fliplr [0, 1]

mosaic [0.5, 1.0]

mixup [0.5, 1.0]

copy paste [0.5, 1.0]

Hyperparameter Domain Range

lr0 [0.0, 0.1]

lrf [1, 5]

momentum [0.5, 0.999]

weight decay [10−8, 10−5]

warmup epochs [0, 25]

warmup momentum [0.5, 0.9]

warmup bias lr [10−4, 10−1]

box [0, 1]

cls [0, 1]

cls pw [0, 1]

obj [0, 1]

obj pw [0, 1]

iou t [0, 0.5]

anchor t [1.0, 10.0]

fl gamma [0.0, 0.3]

anchors [1.0, 10.0]

3.3 Model Architectures

We investigate the effectiveness of applying HOMOPT in comparison to random optimization for different object
detection models in the context of ATR. The object detection models we have chosen to evaluate are Tiny
YOLO, YOLOv5l6, YOLOv5m6, and YOLOv5s6†. These models represent a diverse set of architectures, sizes,
and complexities, which makes them a suitable choice for exploring the impact of optimization methods on
model performance. The selected object detection algorithms offer varying trade-offs between accuracy and
computational efficiency, making them suitable for a wide range of applications. By evaluating these models, we
can gain a deeper understanding of how optimization techniques such as HOMOPT can influence the performance

†The models used for experimentation were accessed from the software developed by Ultralytics15
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of object detection models with different characteristics. Furthermore, these models are based on the well-
established YOLO15 framework, which is known for its real-time detection capabilities and has been widely
adopted in various ATR applications.

Tiny YOLO is a lightweight version of the YOLO object detection algorithm, designed for real-time object
detection on devices with limited computational resources. It maintains the core principles of YOLO, such as
single-shot detection, while using fewer convolutional layers and having reduced model complexity. YOLOv5l6
is a variant of the YOLOv5 object detection algorithm with a larger architecture and a deeper backbone. The
“l” in YOLOv5l6 stands for “large,” indicating that the model has more layers and filters, making it suitable
for high-resolution images. The “6” in the name refers to the number of output scales used in the model, which
helps improve detection performance across different object sizes. YOLOv5m6 is a medium-sized variant of the
YOLOv5 object detection algorithm. Like YOLOv5l6, this model uses six output scales to improve performance
on objects of various sizes. However, YOLOv5m6 has fewer layers and filters than YOLOv5l6, making it a more
balanced choice in terms of accuracy and computational resources. YOLOv5s6 is the smallest variant of the
YOLOv5 object detection algorithm, designed for fast inference on devices with limited computational power.
Despite its smaller size, YOLOv5s6 maintains six output scales for improved object detection across different sizes.

4. RESULTS

Table 3 shows the best observed validation box loss on the 1000-2000k dataset for four different YOLO mod-
els: TINY YOLO, YOLOv5l6, YOLOv5m6, and YOLOv5s6. The models were trained using random search
optimization method and HOMOPT. The table shows that all models had a lower validation loss when using
HOMOPT, except for YOLOv5m6, which had the same validation loss for both optimization methods. The
largest improvement was seen for the TINY YOLO model, which had a 91.2% decrease in validation loss when
using HOMOPT method compared to using random search.

Table 3. Best observed validation loss on the 1000-2000 meter data. BASE refers to random search optimization and
HOM refers to HOMOPT.

Model BASE HOM
TINY YOLO 0.056446 0
YOLOv5l6 0.00070467 0
YOLOv5m6 0 0
YOLOv5s6 0.0021693 0
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Figure 2. Comparison of random search and HOMOPT on 4 different architectures of YOLO on the 1000-2000 meter
data. The log regret at each iteration is displayed.

Table 4 shows the best observed validation box loss on the 2000-3000 meter range data for the same four
YOLO models. Similar to Table 3, the models were trained using random search optimization and the HOMOPT
method. The table shows that HOMOPT again performed better than random optimization alone for TINY
YOLO and YOLOv5s6. For YOLOv5m6 both methods had the same validation loss and random search found
a lower validation box loss on the YOLOv5m6 model. The largest improvement was seen for YOLOv5s6, which
had a 52.6% decrease in validation loss when using the HOMOPT method compared to random search.
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Table 4. Best observed validation loss on the 2000-3000 meter data. BASE refers to random search optimization and
HOM refers to HOMOPT.

Model BASE HOM
TINY YOLO 0.020519 0.0018149
YOLOv5l6 0 0
YOLOv5m6 0 0.011574
YOLOv5s6 0.00050875 0.00024132
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Figure 3. Comparison of random search and HOMOPT on 4 different architectures of YOLO on the 2000-3000 meter
data. The log regret at each iteration is displayed.

The simple regret plot (Figure 2) for the 1000 - 2000 meter data range show a clear advantage of using
HOMOPT method over random optimization. The TINY YOLO model shows a significantly lower regret for
HOMOPT, indicating that it reaches a better optimum faster than the random optimization. This trend is also
visible for the YOLOv5l6 and YOLOv5s6 models, where the HOMOPT optimization method again outperforms
random optimization. However, for the YOLOv5m6 model, the regret plots are less conclusive. While HOMOPT
did not merge to a better optimum sooner than random, it eventually converged to the same best optimum as
the random optimization.

The second set of simple regret plots were generated for the 2000-3000 meter range data (Figure 3), and
compared the performance of random and HOMOPT method. For the TINY YOLO and YOLOv5l6 architec-
tures, the regret plot for HOMOPT showed consistently lower regret than the plot for random optimization.
In the case of YOLOv5s6, random optimization initially converged faster but ultimately reached a suboptimal
value, whereas the HOMOPT converged to a better optimal value. However, for YOLOv5m6, HOMOPT did
not outperform random optimization in terms of reaching the best optimal value.

We observed that some of the models had a validation box loss of zero for both random search and HOMOPT,
indicating perfect performance on the validation set. While this may seem like a desirable outcome, it can also
be a sign of overfitting. In particular, a model that is perfectly tuned to the training data may fail to generalize
to new data. We also note that a zero validation score may indicate that the model is simply memorizing the
training data, rather than learning general patterns that can be applied to new data. We talk about ways to
address this in the optimization search in the discussion section.

5. DISCUSSION

In this study, we compared the performance of random optimization and HOMOPT for hyperparameter tuning of
YOLO models on the DSIAC ATR Algorithm Development Image Database. Our results indicate that HOMOPT
consistently outperformed random optimization for most of the YOLO models and data ranges tested in regards
to lowering the validation loss and converging to a better optimum sooner. The fact that the optimization method
is able to bring the validation score down to zero is a good indication that it is performing well and able to find
the optimal solution for the given problem. However, we also observed that overfitting occurred in the models
which we hypothesize is due to the arbitrary choice of training each model for 300 epochs. The effect of this on
the predictions from the model can be seen in Figure 7. To address the issue of overfitting during optimization,
one can incorporate methods such as early stopping or regularization techniques like dropout in the training
process at each search iteration. Early stopping involves monitoring the validation score during training and
stopping the optimization process when the validation score no longer improves, thus preventing the model from
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continuing to overfit. Dropout is a technique that randomly drops out (sets to zero) a fraction of the model’s
neurons during training, which can help prevent overfitting by encouraging the network to learn more robust
representations. Despite this limitation, our results suggest that the HOMOPT could be a promising approach
for hyperparameter tuning in computer vision tasks.

Figure 4. *

(a) True labels
Figure 5. *

(b) Properly trained model
Figure 6. *

(c) Overfit model predictions
Figure 7. Examples of validation images with corresponding model predictions after different sets of training epochs. (a)
shows the true labels, (b) shows predictions from a properly trained model for only 60 epochs, and (c) shows predictions
from an overfit model trained for 300 epochs.

Furthermore, we realized domain knowledge can play a significant role in improving the results of hyperpa-
rameter optimization. In particular, we found that heavy augmentations caused worse performance, indicating
that the search space could potentially be improved by constraining the range of augmentations based on domain
knowledge. An example of the type of augmentations that resulted in varying performances in the model can
be seen in Figure 8. The heavy augmentations illustrated in the mosaics on the left in Figure 8 resulted in a
model that was unable to detect the vehicles in the validation samples, whereas the lighter set of augmentations
as seen in the mosaic on the right in Figure 8 resulted in a stronger performing model. Heavy augmentations
can lead to poor performance in the model because they can introduce too much variation in the data, making it
difficult for the model to learn and generalize to new, unseen data. This is particularly true for models trained
on small datasets, where the variations introduced by heavy augmentations can dominate the limited amount
of training data, leading to overfitting. Some augmentations may also not be appropriate for certain types of
data or applications. For example, in object detection tasks, heavy augmentations on the object of interest can
make it unrecognizable or difficult to detect, resulting in poor performance. Domain knowledge can thus be
incorporated in various ways to improve the search process such as imposing constraints on hyperparameters
based on prior knowledge of the problem at hand. Additionally, while the use of multi-objective optimization
techniques can further enhance the performance of the search algorithm by considering multiple criteria, such as
accuracy and inference time, it can also be used to incorporate more domain knowledge into the optimization
process, as multiple objectives can be used to reflect different aspects of the problem. We believe that these
findings provide insight into the potential benefits of incorporating domain knowledge into the hyperparameter
optimization process, which could lead to more efficient and effective optimization in the future.

Moving forward, one potential avenue for future research is to explore the incorporation of depth cues into
object detection algorithms. This could be achieved by jointly optimizing the reconstruction error and object
detection performance. Another area worth investigating is the use of multi-objective optimization techniques
to simultaneously optimize multiple objectives, such as detection accuracy, computational efficiency, and inter-
pretability. Furthermore, there is a need to investigate the integration of domain knowledge into hyperparameter
optimization. Methods like Bayesian optimization and reinforcement learning can help incorporate this knowl-
edge and improve the optimization process.

Hyperparameter optimization is a powerful tool that can improve the accuracy and efficiency of object
detection, surveillance, reconnaissance, and other military technologies. By optimizing hyperparameters such
as learning rate and momentum, we can improve the accuracy of object detection in challenging conditions like
low resolution or noisy images. It can also increase the efficiency of these systems, which is crucial in time-
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Figure 8. Mosaics with heavy augmentations Figure 9. Mosaics with light augmentations

sensitive military applications. Furthermore, hyperparameter optimization can also be applied to optimize other
aspects of military technology such as radar systems or unmanned aerial vehicles. The HOMOPT method can
efficiently explore the hyperparameter space of these systems and find the optimal set of parameters to maximize
their performance. Unmanned aerial vehicles (UAVs) are increasingly being used in military applications for
reconnaissance, surveillance, and other missions. Optimizing the hyperparameters of these systems can help
improve their accuracy, efficiency, and reliability, which is critical for their success in the field.

Our work has important implications for the military and defense industries, particularly in surveillance and
reconnaissance. Object detection is crucial in these applications, and optimizing hyperparameters in YOLO
models can significantly improve their accuracy and efficiency. The HOMOPT algorithm could be used to
optimize other aspects of military technology, such as radar systems or UAVs. Moreover, our work could also
have significant implications for synthetic aperture radar (SAR) applications in the military and beyond. SAR is
a remote sensing technology used for imaging and reconnaissance, and it has a wide range of military and civilian
applications. By optimizing hyperparameters in YOLO models, we could potentially improve the accuracy and
efficiency of SAR systems. The HOMOPT algorithm could be used to optimize other aspects of SAR technology,
such as antenna design or image reconstruction.

6. CONCLUSION

In conclusion, automatic target recognition (ATR) is a challenging problem that has been extensively studied in
the military and defense industries. The low resolution and noise in the images make it difficult to accurately
detect and recognize objects in the scene. Our study provides valuable insights into the use of hyperparameter
optimization to improve the accuracy and efficiency of ATR systems. Specifically, the HOMOPT algorithm
provides an efficient way to search the hyperparameter space and identify the optimal set of parameters for
YOLO models. Our work has important implications for the military and defense industries, as well as for other
applications of deep learning in computer vision. By improving the accuracy and efficiency of ATR systems, we
can enhance their performance in challenging conditions and improve their usefulness in real-world scenarios.
Furthermore, the HOMOPT algorithm can be applied to other areas of military and civilian technology, such
as radar systems and unmanned aerial vehicles, to optimize their performance and capabilities. Our findings
pave the way for further research in this area and have the potential to significantly advance the capabilities of
military and civilian technologies.

Proc. of SPIE Vol. 12521  1252107-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 20 Jun 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



ACKNOWLEDGMENTS

This work was funded by the DEVCOM Army Research Laboratory under the cooperative agreement W911NF-
20-2-0218.‡

REFERENCES

[1] Defense Systems Information Analysis Center, “ATR Algorithm Development Image Database.” https:

//dsiac.org/databases/atr-algorithm-development-image-database/.

[2] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L., “Imagenet: A large-scale hierarchical image
database,” in [2009 IEEE conference on computer vision and pattern recognition ], 248–255, Ieee (2009).

[3] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L., “Mi-
crosoft coco: Common objects in context,” in [Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13 ], 740–755, Springer (2014).

[4] Abraham, S., Maduranga, K. D., Kinnison, J., Hauenstein, J., and Scheirer, W., “Homotopy-based hyper-
parameter optimization,” in [Under Review ],

[5] Gregoris, D. J., Yu, S. K., Tritchew, S., and Sevigny, L., “Wavelet transform-based filtering for the enhance-
ment of dim targets in flir images,” in [Wavelet Applications ], 2242, 573–583, SPIE (1994).

[6] Yoon, S. P., Song, T. L., and Kim, T. H., “Automatic target recognition and tracking in forward-looking
infrared image sequences with a complex background,” International Journal of Control, Automation, and
Systems 11(1), 21–32 (2013).

[7] Musicki, D. and Evans, R., “Clutter map information for data association and track initialization,” IEEE
Trans. on Aerospace and Electronic Systems 40, 387–398 (April 2004).

[8] Mahalanobis, A., Muise, R. R., and Stanfill, S. R., “Quadratic correlation filter design methodology for
target detection and surveillance applications,” Applied Optics 43(27), 5198–5205 (2004).

[9] Zhou, Y.-T. and Crawshaw, R. D., “Contrast, size, and orientation-invariant target detection in infrared
imagery,” in [Automatic Object Recognition ], 1471, 404–411, SPIE (1991).

[10] Poster, D., “Defense Systems Information Analysis Center (DSIAC) ATR Algorithm Development Image
Database.” Online (2023).

[11] Nasrabadi, N. M., “Deeptarget: An automatic target recognition using deep convolutional neural networks,”
IEEE Transactions on Aerospace and Electronic Systems 55(6), 2687–2697 (2019).

[12] Mahalanobis, A. and McIntosh, B., “A comparison of target detection algorithms using DSIAC ATR algo-
rithm development data set,” in [Automatic Target Recognition XXIX ], 10988, 47–51, SPIE (2019).

[13] Ren, S., He, K., Girshick, R., and Sun, J., “Faster R-CNN: Towards real-time object detection with region
proposal networks,” Advances in neural information processing systems 28 (2015).

[14] Kinnison, J., Kremer-Herman, N., Thain, D., and Scheirer, W., “Shadho: Massively scalable hardware-aware
distributed hyperparameter optimization,” in [2018 IEEE Winter Conference on Applications of Computer
Vision (WACV) ], 738–747, IEEE (2018).

[15] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., “You only look once: Unified, real-time object
detection,” in [Proceedings of the IEEE conference on computer vision and pattern recognition ], 779–788
(2016).

‡We also acknowledge the assistance of ChatGPT, a language model trained by OpenAI, for providing helpful sugges-
tions during the writing of this manuscript.

Proc. of SPIE Vol. 12521  1252107-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 20 Jun 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


